

Efecto de amitraz sobre la calidad del esperma bovino

Carranza-Martin, Ana C., Fabra, Mariana C., Farnetano, Nicolás A., Anchordoquy, Juan M., Anchordoquy, Juan P., Furnus, Cecilia C., Nikoloff, Noelia IGEVET, Instituto de Genética Veterinaria "Ing. Fernando N Dulout" (UNLP-CONICET-CONICET LA PLATA), Facultad de Ciencias Veterinarias - UNLP.

Calle 60 118, B1904AMA La Plata, Buenos Aires, Argentina

noelianikoloff@gmail.com

Introducción: Los contaminantes ambientales pueden tener efectos perjudiciales sobre la fertilidad masculina e influir en la función reproductiva, se han encontrado tanto en el semen de animales de granja como en el humano. Amitraz (AMZ) es un pesticida formamidina utilizado como insecticida y acaricida en medicina veterinaria. El objetivo fue estudiar el efecto de AMZ sobre el espermatozoide bovino. Materiales y métodos: se trato semen criopreservado de 5 toros de raza Angus con 10, 15, 25 µgAMZ/mL por 2h en condiciones *in vitro*. Se evaluó viabilidad con colorantes supravitales, e integridad de la membrana plasmática y acrosomal mediante las técnicas de HOST y *Pisum sativum*, respectivamente. Se trabajó con controles negativo y de solvente, y se realizaron 3 réplicas por toro y por punto experimental. Los datos fueron analizados con SAS 9.4 (Institute Cary, NC, USA). Resultados: la viabilidad y la integridad de las membranas de los espermatozoides decrecen a partir de 15 µgAMZ/mL con respecto al control (P<0.05). Conclusión: En los últimos años, la infertilidad ha aumentado y se sabe que se debe en un 50% al factor masculino. Las autoridades reguladoras están buscando modelos innovadores que no incluyan experimentación con animales para lograr detecciones rápidas y precisas. El uso de semen bovino podría ser una buena estrategia para comprender los mecanismos de toxicidad en la reproducción ejercidos por contaminantes emergentes.

Tratamiento (μg/ml)	(n)	Viabilidad (%)	HOST positivo (%)	Reacción acrosomal (%)
		0h	0h	0h
Т0	2000	90,01±1,76	51,90±5,02	19,33±0,33
		2h	2h	2h
CN	2000	88,81±1,71	32,94±3,41	24,50±3,93
DMSO	2000	77,44±1,99	35,90±3,10	23,90±3,52
AMZ10	2000	70,00±2,35	30,58±2,89	26,25±3,37
AMZ15	2000	63,89±2,33*	24,95±2,92*	33,53±4,31**
AMZ25	2000	58,20±2,46*	13,69±2,50**	38,12±4,03**

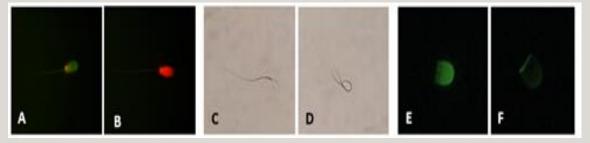


Tabla. Calidad del esperma bovino luego de 2 h de exposición a AMZ

Bovine sperm were treated for 2 h in the IVF medium with AMZ (μ g/ml). Tiempo cero (T0); control negativo (CN); dimethyl sulfoxido (DMSO): control de solvente. Datos expresados como porcentaje (%) \pm ESM. * P < 0.05; ** P < 0.01

Fotos. A-B) Ensayo de viabilidad con bromuro de etidio/naranja de acridina (40x), A=vivo, B=muerto; **C-D)** Ensayo de integridad funcional de la membrana (HOST) (40x), C=HOST negativo, D=HOST positivo; **E-F)** Ensayo de status acrosomal (1000x), E=acrosoma intacto, F=acrosoma reaccionado.