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ABSTRACT: Per- and polyfluoroalkyl substances (PFASs) are
highly persistent synthetic chemicals, some of which have been
associated with cancer, developmental toxicity, immunotoxicity,
and other health effects. PFASs in grease-resistant food
packaging can leach into food and increase dietary exposure.
We collected ∼400 samples of food contact papers, paperboard
containers, and beverage containers from fast food restaurants
throughout the United States and measured total fluorine using
particle-induced γ-ray emission (PIGE) spectroscopy. PIGE can
rapidly and inexpensively measure total fluorine in solid-phase
samples. We found that 46% of food contact papers and 20% of
paperboard samples contained detectable fluorine (>16 nmol/
cm2). Liquid chromatography/high-resolution mass spectrome-
try analysis of a subset of 20 samples found perfluorocarbox-
ylates, perfluorosulfonates, and other known PFASs and/or unidentified polyfluorinated compounds (based on nontargeted
analysis). The total peak area for PFASs was higher in 70% of samples (10 of 14) with a total fluorine level of >200 nmol/cm2

compared to six samples with a total fluorine level of <16 nmol/cm2. Samples with high total fluorine levels but low levels of
measured PFASs may contain volatile PFASs, PFAS polymers, newer replacement PFASs, or other fluorinated compounds. The
prevalence of fluorinated chemicals in fast food packaging demonstrates their potentially significant contribution to dietary PFAS
exposure and environmental contamination during production and disposal.

■ INTRODUCTION

Per- and polyfluoroalkyl substances (PFASs) are widely used in
nonstick, stain-resistant, and waterproof consumer products
because of the hydrophobic and lipophobic properties of the
PFASs. Their characteristic carbon−fluorine bonds make them
extremely resistant to degradation, even at high temperatures.
The most commonly used PFASs have been detected globally
in water, soil, sediment, wildlife, and human blood samples.1−7

Epidemiological studies have found associations between
exposures to the long-chain PFASs perfluorooctanoic acid
(PFOA) and/or perfluorooctanesulfonic acid (PFOS) and
kidney and testicular cancer, low birth weight, thyroid disease,
decreased sperm quality, pregnancy-induced hypertension, and
immunotoxicity in children.8−14 In addition, toxicological

studies in animals have linked PFOA and/or PFOS exposure
to altered mammary gland development, reproductive and
developmental toxicity, testicular cancer, obesity, and immune
suppression.15−19 Because of long half-lives in the human body
and concerns about adverse health effects, major U.S.
manufacturers have voluntarily phased out20 production of
PFOA, PFOS, and some other long-chain PFASs (defined as
C6 and longer sulfonates and C7 and longer carboxylates)21 for
the majority of uses, although long-chain PFASs are still
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produced globally. Common replacements include shorter-
chain PFASs that have shorter human half-lives22 and are less
bioaccumulative,23 as well as polyfluorinated polyether-based
polymers.24 Alternative PFASs are also persistent in the
environment22,25 or degrade into persistent molecules. Short-
chain PFASs are harder to remove from drinking water.26 While
health effect data are limited, results from preliminary studies
and structural similarities to long-chain PFASs have raised
concerns about exposure to short-chain PFASs,22,27−31

prompting efforts to support the development and use of
nonfluorinated alternatives.30,32

PFASs have been detected in a wide range of products,
including food contact materials (FCMs), carpeting and carpet
cleaners, upholstery, floor waxes, and outdoor apparel.33−35

PFASs in household products that migrate into food, indoor air,
and dust can contribute to human exposure,36−40 although
these contributions are difficult to assess given the wide range
of concentrations and relative abundances in exposure media.
PFAS-containing FCMs such as fast food packaging and

microwave popcorn bags can contribute to indirect dietary
exposure via migration into food.36,37,41 Prior studies of fast
food packaging such as wrappers, paperboard, and paper cups
found a wide range of PFASs, including PFOS and other
perfluoroalkyl sulfonates (PFSAs), PFOA and other perfluor-
oalkyl carboxylates (PFCAs), fluorotelomer alcohols (FTOHs),
and polyfluoroalkyl phosphate esters (PAPs).42−46 Relative
abundances of PFASs vary among product types and studies.
For instance, paper cups had relatively low PFAS concen-
trations compared to other types of packaging in some
studies,42,43 but relatively high concentrations in another.46

Product formulations varied among countries, reflecting
differences in production patterns. For instance, a 2016 study
found that 6:2 FTOH was the most common FTOH in U.S.
FCMs, whereas long-chain FTOHs were more common in
samples from China, a difference attributed to the U.S. phase-
out of long-chain PFASs.43

The extent of migration of PFASs from FCMs into food
depends on the amount, type, and chain length of PFASs used,
the type of food (e.g., fat- vs water-based), the contact time, and
the temperature.36,41,43 Despite brief contact times between
FCMs and fast food, high temperatures and use of emulsified
fats can significantly increase the extent of migration of PAPs
and other PFASs into food.36 Short-chain FTOHs and PFCAs
were found to have migration efficiencies from paper bowls
higher than those of long-chain analogues.43

Exposure to PFASs from fast food packaging is especially
relevant for children, because one-third of U.S. children
consume fast food daily47 and children may be more susceptible
to the adverse health effects.13 Regulations in the United States
specify which PFASs are allowed in FCMs. The U.S. Food and
Drug Administration (FDA) currently approves more than 90
unique monomer and polymer PFASs for use in FCMs such as
paper and paperboard,48 including 20 PFASs approved to
impart oil, grease, and/or water resistance that are listed in
Table S1. Since 2008, 11 substances have been approved and
registered by the FDA on the Inventory of Effective Food
Contact Substance (FCS) Notifications; nine of these
substances from four different chemical manufacturers are
polymers that utilize a 6:2 fluorotelomer component.48 In
January 2016, in response to a petition filed by the Natural
Resources Defense Council (NRDC) and other environmental
organizations, the FDA rescinded approval for three families of
long-chain PFASs used in FCMs, concluding there was no

longer a reasonable certainty of no harm.49 However, this
restriction is not expected to have a significant impact because
the FDA had already worked with manufacturers to phase out
use of these compounds in 2011.50 While some European
countries also list individual compounds approved for use in
food contact materials,51 in 2015 the Danish Ministry of
Environment and Food issued a recommended limit for total
organofluorine in paper and paperboard FCMs (0.35 μg of F/
dm2 or 0.18 nmol of F/cm2).52 The Supporting Information
provides additional information about the Danish limit.
Prior studies that found PFASs in fast food packaging have

been based on relatively few samples and inconsistent analytical
methods. Here we applied a novel technique using particle-
induced γ-ray emission (PIGE) spectroscopy as a rapid-
screening method53 to test more than 400 samples of food
packaging from fast food restaurants across the United States
for fluorinated chemicals. To evaluate whether samples with
elevated total fluorine levels contained known PFASs and other
compounds likely to be PFASs, we analyzed a subset of samples
using conventional solvent extraction and liquid chromatog-
raphy/high-resolution mass spectrometry analysis of PFASs.
This study provides a proof-of-concept application of the PIGE
method for rapidly screening a large number of packaging
samples and prioritizing samples for compound-specific
analyses. Our results provide the most comprehensive assess-
ment to date of the prevalence of fluorinated compounds in
U.S. fast food packaging and the availability of nonfluorinated
alternatives.

■ MATERIALS AND METHODS
Sample Collection. In 2014 and 2015, we collected 407

samples of paper and paperboard food wrappers and related
food packaging at U.S. fast food restaurants. The study was
designed to represent a broad distribution of packaging types
and geographic locations but did not necessarily reflect the
overall distribution of total F concentrations in fast food
packaging; 98% of samples were collected in five regions:
western Washington (25%), eastern Massachusetts (24%),
western Michigan (20%), northern California (17%), and
metropolitan Washington, DC (12%). Three hundred ninety-
five samples came from 27 large fast food chains (with ≥100
U.S. stores); each chain was sampled in up to five regions at up
to three stores per region. Another 12 samples came from four
individual fast food restaurants. Samples were 100−2500 cm2 in
area, and each was placed into a zip-lock bag or wrapped
separately in aluminum foil to avoid fluorine transfer among
samples.
Samples were divided into six categories: (1) food contact

paper (e.g., sandwich wrappers and pastry bags), (2) non-
contact paper (e.g., outer bags), (3) food contact paperboard
(e.g., boxes for fries and pizza), (4) paper cups (for hot or cold
drinks), (5) other beverages (e.g., milk and juice containers),
and (6) miscellaneous (e.g., lids and applesauce containers).
Food contact papers were further divided into three categories
on the basis of likely uses: (1) sandwiches, burgers, and fried
foods, (2) Tex-Mex food, and (3) desserts and breads.

Sample Analysis. Details of analytical methods and results
of QA/QC analyses are provided in the Supporting
Information. All samples were analyzed using PIGE spectros-
copy at Hope College. PIGE previously has been used to
measure fluorine in geological and biological samples.54−57 An
analytical method for application of PIGE to papers and textiles
(Figure S1) was developed by Ritter et al.53 and applied to
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carpet and clothing samples.58 In short, each sample was
irradiated with approximately 10 nA of 3.4 MeV protons for
180 s. The characteristic γ-rays emitted from the de-excitation
of 19F at 110 and 197 keV had background-subtracted
integrations summed for each sample irradiation. Integrated
γ-ray counts in the 110 and 197 keV peaks per microcoulomb
of beam on target (counts per microcoulomb) were converted
to concentrations of total fluorine (in nanomoles of F per
square centimeter) using PFAS standards dissolved in methanol
and dried onto filter paper.53 The limit of detection (LOD) was
16 nmol of F/cm2, and the limit of quantification (LOQ) was
50 nmol of F/cm2.
The ion beam typically penetrates 100−200 μm into a solid

material. For wrapper samples, our analyses indicate that the
beam can completely penetrate the samples, whereas the beam
did not appear to completely penetrate paperboard samples
that are much thicker; therefore, we analyzed thick samples on
both sides and selected the higher concentration to capture the
total fluorine signal associated with surface treatments.
As part of the quality assurance protocol, 10% of samples

were replicated (two or three identical samples obtained
simultaneously from the same restaurant and analyzed
independently and blindly) to assess the reproducibility of
analytical results and potential sample-to-sample variability
(Table S2 and Figure S2). To assess analytical reproducibility,
5% of samples were analyzed repeatedly [two to five times per
sample (Table S3)]. Results for replicates were combined prior
to data analysis so that all samples were weighted identically
regardless of the number of analyses.
To explore the extent to which PIGE analyses indicate the

presence of PFASs, we analyzed 20 of our food packaging
samples for PFASs using conventional solvent extractions
followed by liquid chromatography/high-resolution mass
spectrometry analysis. The identities of samples with high
and low fluorine levels were unknown to the analyst conducting
these measurements. We conducted methanol extractions on
14 samples with a total F concentration of >200 nmol of F/cm2

and six samples with a total F concentration below the LOD.
Extracts were analyzed for 89 PFASs with known structures and
for unidentified polyfluorinated compounds using suspect
screening analyses with liquid chromatography/time-of-flight
mass spectrometry (LC/TOF MS) following methods
described by Rager et al.59 (see the Supporting Information
for more details). Five samples (25%) were analyzed in
duplicate.

■ RESULTS AND DISCUSSION
Of 407 samples, 33% had detectable total F concentrations
(Table 1), ranging from 16 to 800 nmol of F/cm2 (Figure 1).
Detection frequencies varied among packaging types, from 0%
for papers not in contact with food (N = 15) and paper cups (N
= 30) to 46% for food contact papers (N = 248). Among food
contact papers, detection frequencies ranged from 38% for
sandwich/burger wrappers to ~57% for Tex-Mex food
packaging and dessert/bread wrappers. Overall, fluorine was
more commonly detected in grease-proof products (e.g., food
contact papers) than in products holding liquids or not
intended to come into contact with food. These detection
frequencies indicate the presence of fluorinated food packaging
currently in use but are not necessarily representative of the
marketplace.
We analyzed a subset of 20 samples using LC/TOF MS

methods to provide more specific identification of individual

PFASs and to validate the results of the PIGE analyses. The
most commonly detected types of PFASs were PFCAs (e.g.,
PFOA and PFHxA), PFSAs (e.g., PFBS), and fluorotelomer
sulfonates (e.g., 6:2 FTS) (Table S5). Six of the 20 samples
(collected in 2014 and 2015) contained detectable levels of
PFOA, even though U.S. manufacturers voluntarily agreed to
stop distributing products containing C8 perfluorinated
compounds for food contact purposes in interstate commerce
in 2011 through a U.S. FDA initiative.60 Unknown poly-
fluorinated compounds were indicated by a homologous series
of compounds whose molecular weight differed by 49.9968
(accurate mass of the -CF2 group) and/or had a negative mass
defect. Total peak areas for known and unknown PFASs varied
by more than 3 orders of magnitude. For many samples, the
signal for unknown polyfluorinated compounds was similar to,
and sometimes much larger than, the signal for known PFAS
compounds, suggesting that a substantial portion of organo-
fluorine in these samples cannot be ascribed to known PFASs.
In general, the LC/MS analyses supported the PIGE results,

because total peak areas associated with known and unknown

Table 1. Percentages of Fast Food Packaging Samples with
Total Fluorine above the Limit of Detection (16 nmol of F/
cm2)

no. of
samples
tested

no. of
brands
tested

no. of states
tested % with F

food contact paper
(by category)

sandwich/
burger

138 20 5 38

dessert/
bread

68 9 5 56

Tex-Mex 42 3 5 57
food contact paper
(all)

248 27 5 46

food contact
paperboard

80 15 5 20

noncontact paper 15 9 3 0
paper cups 30 9 4 0
other beverage
containers

25 10 1 16

miscellaneous 9 7 1 0
total 407 29 5 33

Figure 1. Total F concentrations (in nanomoles of F per square
centimeter) based on PIGE analyses of fast food packaging samples.
Only samples with concentrations of total F above the LOD (16 nmol
of F/cm2) are plotted; detection frequencies are listed in Table 1.
Concentrations between the LOD and LOQ (50 nmol of F/cm2) are
considered estimated.
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PFASs in 70% of samples (10 of 14) that had a PIGE total F
concentration of >200 nmol/cm2 were greater than peak areas
in six samples with a total F concentration below the LOD
(Figures S3 and S4 and Table S4). However, some samples
with high levels of total fluorine according to PIGE did not
contain elevated levels of PFASs according to LC/MS analyses.
Four samples with a total F concentration of >200 nmol/cm2

contained peak areas for known and/or unknown PFASs that
were at or below levels detected in six samples with a total F
concentration below the LOD. One explanation for these
findings is that much of the total fluorine in these samples was
present as inorganic fluorine or non-PFAS organofluorine
compounds. Another explanation is that our extraction and
LC/TOF MS analyses failed to capture a substantial portion of
the PFASs present in the samples. For instance, FTOHs have
been among the most frequently detected PFASs in FCMs,43

but they are volatile and form adducts with LC modifiers,
making their measurement erratic as determined by LC/MS.
We screened for but did not find detectable FTOH-acetate or
formate adduct ions (4:2 through 10:2), which are expected to
form if FTOHs were present, although FTOHs may have been
lost during sample preparation. Food packaging also can
contain newer replacement compounds, such as polyfluorinated
polyether-based (PFPEs) polymers,24 which were not among
our target analytes because of a lack of authentic standards and
difficulties in their analysis. We found evidence that PFPEs
were present in some of our sample extracts via the detection of
repeating units consistent with -C2F4O- (115.989 units). Paper
and paperboard may also contain other fluorinated polymers
(Table S1) that may not be readily extractable in methanol.
Among regions, detection frequencies for total F ranged from

38 to 55% for food contact papers and from 10 to 33% for
paperboard containers (Table S6). A logistic regression for the
presence of fluorinated chemicals did not find significant
differences among regions (Table S7), using region and
product type as categorical independent variables. Dessert/
bread wrappers and Tex-Mex food packaging had a percentage
of fluorinated samples higher than those of all other categories
of food contact samples (Table 1 and Table S7). To evaluate
short-term temporal variability, we collected nine sets (N = 2−
6) of identical samples from the same locations over the course
of 1−8 weeks. We observed little variation in fluorine detection
on this time scale. Five sets all contained quantifiable fluorine
(above the LOQ); three sets all were below the LOD, and in
one set, one sample was below the LOD and the other between
the LOD and LOQ.
We attempted to investigate the fast food chains’ knowledge

of their use of fluorinated food packaging. For each of the fast
food chains that we sampled, we submitted questions through
Web sites and by phone regarding company use, sourcing, and
general policies on fluorinated products. Only two companies
provided a substantive response: one stated that they believed
none of their food packaging contained fluorinated chemicals,
and the other stated that they verified with their suppliers that
their food packaging did not contain PFASs. However, we
found a substantial portion of fluorinated food contact papers
from these two chains. While it is difficult to draw conclusions
on the basis of so few responses, this suggests a lack of
knowledge in the fast food industry about the use of fluorinated
packaging.
Study Implications. We found that fluorinated compounds

are common in food contact papers and other fast food
packaging in the United States; 33% of samples we tested had

total fluorine concentrations above the LOD for PIGE of 16
nmol of F/cm2 (∼60 μg/g in wrappers, ∼14 μg/g in
paperboard). This LOD, which is equivalent to 30 μg of F/
dm2 (or 44 μg of PFOA/dm2), is well above the Danish
Ministry of Environment and Food’s guideline of 0.35 μg of F/
dm2 for total organic fluorine,52 which may include both
intentionally added and background PFASs. Samples with
detectable total fluorine based on the PIGE method were likely
treated with PFASs or other fluorinated compounds; according
to the Danish Ministry of Environment and Food, diPAP
concentrations of 600−9000 μg of F/g in food packaging
(∼360−5400 μg of F/g of paper) were attributed to intentional
additions to paper pulp, and diPAP concentrations of 1−100 μg
of F/g (∼0.6−60 μg of F/g of paper) were hypothesized to be
associated with surface coatings.61,62 However, the PIGE
method may not be sufficiently sensitive to identify all samples
with intentionally added PFASs. We detected PFASs in all of
our samples with a total F concentration below the LOD using
a more sensitive LC/MS method, which may capture both
PFASs that are intentionally added to packaging materials and
background levels, for instance, from recycled paper or
unintentional cross contamination. At this point, there is no
clear distinction between PFAS or total F concentrations
associated with intentional addition to food contact materials
and unintentional background levels. Thus, while we found that
the concentration of total F in many samples was below the
LOD for the PIGE method (54% of papers and 80% of
paperboard), we cannot determine the proportion of these
samples that are free of the addition of PFAS-containing grease-
proofing additives.
It is difficult to assess exposure and risk associated with

PFASs in fast food packaging because the extent of exposure
from FCMs and the toxicity of most fluorinated chemicals in
FCMs are poorly characterized. While much of the U.S.
production of PFOS and PFOA was phased out between 2000
and 2015, these compounds are still produced in other regions
of the world. Some food packaging approved by the U.S. FDA
is labeled “PFOA-free” but contains shorter-chain C6 PFASs63

or long compounds with perfluorinated subunits linked by
ether groups.25 PFHxA, the C6 homologue of PFOA, has a
much shorter human half-life (32 days compared to 3.5
years),64 but preliminary toxicity testing suggests it has some of
the same adverse effects.29,31 In general, very little information
about human half-lives and potential health effects of other
replacement PFASs is available, despite widespread exposures
and documented toxicity of related long-chain PFASs.28,30

Fluorinated FCMs are also a source of PFASs to the
environment. Manufacturing facilities for PFAS-containing
paper products may release PFASs into air and wastewater.51

PFASs in consumer products that end up as municipal solid
waste can be transported to groundwater through landfill
leachate.65 Because of their environmental persistence, PFASs
should be considered incompatible with compostable food
packaging.66 However, ASTM compostability standards D6400
and D6868 do not consider PFASs, so they are currently
allowed in compostable foodware.67,68 Direct land application
of compost with PFAS-containing food packaging may result in
elevated soil concentrations and enhanced phytoaccumulation.
PFASs in land-applied biosolids have been shown to
accumulate in crop plants.69−72 PFASs are mobile in ground-
water systems and have been detected in drinking water wells
globally.73−76
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Our study demonstrates the utility of the PIGE spectroscopic
method for measuring total fluorine concentrations in food
packaging and identifying samples most likely to contain high
levels of PFASs. In addition to consumer products, PIGE also
can be used to analyze environmental samples for the presence
of PFASs and delineate impacted areas. Because sample
preparation and analysis take only a few minutes, we were
able to rapidly screen more than 400 packaging samples for
PFASs. The PIGE method is nondestructive and can be used as
an inexpensive screening technique to prioritize samples for
more time- and labor-intensive chemical analyses to identify
individual PFASs and characterize their migration into food. In
addition, because PIGE measures total fluorine, it can detect
unidentified PFASs that are not included in conventional mass
spectrometry-based analyses. This technique can be applied to
provide information to food packaging distributors, restaurants,
and consumers who prefer truly compostable products and
wish to avoid PFAS-containing FCMs because of concerns
about potential adverse human and ecological health effects.
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